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Burgers’ (1 939) model equations for turbulence are considered analytically using 
a singular perturbation and nonlinear wave approach. The results indicate that 
there is an ultimatesteady turbulent state. This is in agreement with thenumerical 
results of Lee (1971) but not with Case & Chiu (1969): the last two papers start 
with a Fourier series approach. 

A consequence of this model is that small disturbances ultimately grow into 
a single large domain of relatively smooth flow, accompanied by a vortex sheet 
in which strong vorticity is concentrated. This makes the results from the model 
different from those usually expected for turbulent flow fields. The model, as 
a result of its simplicity, has retained a degree of regularity which is not found 
in most forms of turbulence. 

1. Introduction and the model equations 
In  an attempt to investigate some of the effects on turbulence of the viscous 

and nonlinear terms in the Navier-Stokes equations and to illustrate mathe- 
matically such turbulent phenomena as dissipation layers, energy balance and 
so on, Burgers (1939, see also 1948) suggested a model set of equations which are 
simpler than the Navier-Stokes ones. The specific problems for which he sug- 
gested that the model applies are turbulent flows in straight channels under the 
action of a constant pressure drop. Here we consider his one-dimensional 
equations, which are 

(1)  
U 

Y h  
vt -k 2vv - - v = vvyy, 

where v(y, t )  is the velocity of the turbulent motion, U(t )  the velocity of the 
primary or mean motion, P the analogue of the external force (pressure) acting 
on the primary motion, v the kinematic viscosity, h the channel width and y, 
where 0 6 y 6 h, the co-ordinate across the channel. In  (l), Uv/h represents a 
nonlinear transmission of energy from the primary to the secondary motion. 
In (2)) vUlh is the viscous force on the primary motion. Boundary and initial 
conditions for (1)  and (2) are zero turbulent velocity at the walls, 

~(0, t )  = 0 = v(h, t ) ,  

and v(y, 0) and U ( 0 )  given. A motivation for the model equations (1) and (2) is 
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seen on adding U times (2) to (1) multiplied by v and integrated with respect to 
y from y = 0 to y = h, which gives an energy balance 

This says that the rate of change of the total kinetic energy of the motion equals 
the work done by the external force on the primary motion, that is, PU less the 
viscous dissipation vU2/h in the primary motion, less the viscous dissipation 

~!~v. :dy in the turbulent motion. The nonlinear term Uv/h in (1)  does not 

appear in (3) since it represents an internal process which effects energy exchange. 
0 

Introduce non-dimensional quantities, denoted by primes, by 

V' = v/P),  U' = U/P*, y' = y/h,  2' = tP*/h, R = P)h/v = I/€, (4) 

where R is a Reynolds number. Substitution of (4) into (1)  and (2) gives the 
dimensionless form of the equations as 

v,+ 2vv,- uv = €?Iyy, 

where for convenience we have omitted the primes; it is to be understood in what 
follows that all quantities are dimensionless. Boundary and initial conditions 
for (5) and (6) are 

v(0, t )  = 0 = v(1, t ) ,  V(Y, 0) = f(Y), U ( 0 )  = u,, (7 )  

wheref(0) = 0 =f(l)  and U, > 0. 

a preliminary considered the unsteady state by setting 
Burgers (1939, 1948) studied the steady-state solutions of (5) and (6) and as 

m 

which satisfies the boundary conditions on v, the first two of conditions (7 ) .  
Substitution of (8) into (5) and (6) gives the coupled nonlinear ordinary dif- 
ferential equations for tn( t )  and U ( t )  as 

If we linearize (5) and (6) about the steady state v = 0, U = 1/E, which is called 
the laminar solution of ( 5 )  and (6), we get, in place of (9), 

so that tncx exp [€-I( 1 - s2n2n2) t ] ,  (1 1 )  

where the cn are the small disturbance functions which will give the perturbation 
in v from (8). From ( 11) we see that linear instability occurs when 

atn/& = [( 11.) - en2n2] tn, 

1/R = E < l/n = 8, = l/Rc7 (12) 
where B,, the critical value of E (=  l / R ) ,  is defined by (12). This paper will be 
concerned with equations (5) and (6) for values of E < E ~ .  
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Case & Chiu (1969), following Burgers (1939), used the above Fourier series 
approach and studied in detail the stability of truncated forms of (9) and (lo).  
Specifically, they considered two sets of these equations, namely those truncated 
at  n = 2 and at n = 3. They found that, as expected, a transition from the 
laminar state to a turbulent state occurs when R = R,. They further found, 
using their truncated equations, that it is possible to have transitions from one 
turbulent state to another depending on the specific range of R ( > B,). They also 
concluded from their analysis that it is possible to cause a finite jump from one 
turbulent state to another by varying the Reynolds number by an infinitesimal 
amount. 

Lee (1971) also used expansion (8) for w(y, t )  and considered the quasi-steady 
form of (9) and (lo), which consists of (9) as it stands but with dU/dt omitted in 
(lo), which becomes 

Lee’s purpose was to simulate the initial-value problem for (9) and (10). He also 
reinvestigated some of the results and conjectures of Case & Chiu (1969). For 
a necessarily restricted class of initial data he computed, numerically, the solu- 
tions using (9) and (13) truncated at  an n sufficiently high that the truncation 
error 1t&/&1 < 3 x with R = 4 (8  = 0*25), n = 21 was required. Lee con- 
cluded from his analysis that (9) and (10) give degenerate turbulent states when 
truncated to the order used by Case & Chiu (1969) and that the finite turbulent- 
turbulent transitions they predicted are not realizable. He further concluded 
that the truncated form of (9) and (lo), with n sufficiently large, yields a unique 
equilibrium state which depends on R and which is obtained from members of 
the specific class of initial data taken. This result is also at  variance with Case & 
Chiu’s (1969) analysis. 

In  this paper we consider (5) and (6) analytically by exploiting the fact that 
8 ( = 1/R) is a small parameter when 8 < e, = l/n-. We use a singular perturbation 
procedure which avoids the problems involved with the Fourier series approach. 
One result indicated by the analysis is that there is, for (5) and (6), a unique 
equilibrium steady state. This is in agreement with Lee (1971). Here, however, 
we need not restrict the class of initial data. We also conclude that there are no 
turbulent-turbulent transitions as found by Case & Chiu (1969) with the 
truncated forms of (9) and (10). Perhaps the most important consequence of the 
results derived here is that they suggest that Burgers’ model equations imply 
that small initial turbulent disturbances ultimately grow into large domains 
with relatively smooth interior flow, accompanied by narrow boundary or transi- 
tion layers, separating a domain from its neighbours or from the walls of the 
flow field. The growth of these large domains represents the generation of lower 
Fourier modes; that is, ‘coarse-grained turbulence ’. The formation of the thin 
transition layers represents the excitation of high Fourier modes. There is thus 
‘ fine-grained turbulence ’ -that is, a strong vortex motion - but it is concentrated 
into thin layers. In  this respect the model yields features different from those 
usually expected for turbulence flow fields (see in this connexion $ 4  below), 
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2. Steady state: singular perturbation solutions 
The steady-state form of (5) and (6) with (7) gives v = v(y) and U as solutions of 

sv,,-2vv,+ uv = 0, v(0) = 0 = w(l), 

Burgers (1939) studied (14) and obtained solutions in the form 

v = +(eU€)~[C-y+log( l+y)]~ ,  

whereq=-2v,/Uandy1< Oandy,> OaretherootsofC-y+log(l+y)=O, 
where C > 0 is a constant to be determined. We follow Burgers' discussion. From 
(16a) it follows that v = 0 when q = 7, and 7 = yz. If y = 7, is associated with 
y = 0 , ~  = yz may be associated with v = 0 at some specified y > 0 which deter- 
mines C. When y2 is associated with y = 1 denote this C by C,. Equation (166) 
with y = 1 and C = C, then gives C, implicitly as a function of the corresponding 
U ,  U, say. To get U,, we would then have to use (15) with v given by (16 a )  with 
C = C,(U,). Such a procedure is analytically not possible. The solution v, vl(y), 
say, is, however, similar to that in figure 1 (a)  below. If y = q2 is now associated 
with y = 4, say, we get another solution, v2(y), with C = C2(U,) given by (166) on 
setting y = 4. This solution gives v for 0 < y < 4 and the solution for 4 < y < 1 is 
obtained from the 0 < y < 4 form on substituting 1 - y for y and - v for v: 
equation (14) is invariant under this transformation. Figure 1 (b )  illustrates 
v2(y). In  this way other solutions are shown to exist for different C. The condition 
that there be m - 1 nodes in 0 < y < 1 in the solution is, from (16 b ) ,  

This is illustrated in figure 1 (c). Burgers (1939) showed that {C,) is a decreasing 
sequence as m increases, and as C,+ 0 equation (17) becomes simply 

1/m = r(e/Um)+. 

Since Urn has a maximum of l /e  from (15) this last expression gives an upper 
limit to m, say M ,  where M = [ l / r e ]  is the largest integer less than or equal to 
1/m. There is thus a finite number of possible solutions for w(y) which have either 
0, 1, . . ., or M nodes. 

In  view of the implicit analytical difficulties in the solutions (16) with (1 7)  we 
obtain here specific expressions for the dissipation 

and the corresponding U = U, for each nodal solution. We reconsider (14) and 
(15) and obtain singular perturbation solutions for e small (e < l/r is sufficiently 
small). We also find the mean flow Urn for each solution. 
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It is helpful below to use an alternative form for 

obtained by multiplying (14) by v and integrating from 0 to 1 to get 

and so 
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where for convenience we have written q5 as the turbulent dissipation. With (1 8), 
(15) becomes 

To be more precise, q5 is the Reynolds shear stress and (19) states that the mean 
flow is being modified by the turbulent fluctuations via the Reynolds stress term. 

In  the absence of shock or steep regions evyy is of O(E) and non-singular 
perturbation solutions of (14) are simply straight lines obtained from 

(20) 1 - 2vv,+ u v  = evyy = O(e),  

so that v = +Uy+A+o(eN)  for all N ,  

where A is an arbitrary constant. We cannot satisfy both boundary conditions 
in (14) and so we must have at  least one singular region. If it is at  y = a, say, 
then in the singular region we write 6 = (y - a)/€ and (14) becomes 

e-lvtt - e-12vvg - u v  = 0, 

which to O( 1) has solutions 

v(&) = a tanh a(b’ - &), v(y) = a tanh [as-l(b - y)], (21) 

where a and b are constants (b’ = s-l(b -a)). Uniformly valid asymptotic 
solutions of (14) to O(1) for E < 1 are, from (20 ) and (2l), 

v(y) = +?7y+A+atanh[ae-l(b-y)], (22) 

as given by Burgers (1939). 
It might appear to be possible to have an infinity of solutions since we might 

take (20) as any straight line simply connected to another straight line by a 
singular solution (21). However, since a tanh [ae-l(b - y)] - 5 a as (b - y)/e+ f 00 

we can only have symmetric and similar steep regions at  all points in the interior 
0 < y < 1. Purthermore all solutions must have an integraZ number of nodes 
with the same form for the solution between each node (compare with figures 
1 (b)  and (c)) .  To see this we consider the phase plane for (14), which is obtained 
from 

w = vy, dw/dv = v(2w- U)/ew (23) 

and is as in figure 2. Because of the symmetry of the integral curves for (23) the 
maximum [v] is the same for the solution between each node, where v = 0. 
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FIGURE 2 

Starting on any integral curve at v = 0, with w < 4U of course, we move round 
it a sufficient number of times to fill the region 0 < y < 1 with similar nodal 
solutions as in figure 1 ( c ) :  each node has to be a t  a rational point in 0 < y < I .  
For example, the case in which there is one node a t  y = a, a =I= 4, is excluded 
since on moving from y = 0 to y = a, v moves along one half of an integral curve 
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in figure 2 .  For the solution in a < y Q 1, v would have to move discontinuously 
onto a different integral curve. 

For a general solution with m - 1 nodes, as in figure 1 (c ) ,  we have for each part 
of the solution, using (22), with U = Urn, 

m m ( 4  = 1, ..., m- I) .  

(24) 

Using (18) and (24) we get by a straightforward integration the dissipation 
function for the complete solution with (m - 1) nodes: 

(25 )  

(26) 

(27) 

The case with no internal nodes has m = 1, figure 1 (a), and that with one internal 
node has m = 2, figure 1 (b) ,  and so on. From (27) we see that for maximum 
dissipation m = 1 and so &ax = #, N 1 - 2 x 3fe with the corresponding 
U, N 2 x 34 -@ from (26 )  as the minimum U.  For minimum dissipation q5 = o 
with the corresponding maximum U = l/e. The extreme cases when U = O(l/e) 
are not covered, of course, by (25)-(27) since we would require m = O(l/e), in 
which case the distance between each node is O(e). In  these cases a different 
singular perturbation solution, which we now give, is required. 

When m = O(l/e) we have U = O(l/e), [v[ < 1 and hence q5 < 1. To investigate 
this situation and prove that there is a finite maximum number of possible 
solutions the appropriate expansions are easily shown to be 

with exponentially small errors. With ( 2 5 ) ,  (19) gives Urn as 

Urn N 2 x 3*m[ 1 + ge2m2]& - $em2 

q5m N 1 - e(2 x 39m[ 1 + ge2m2]f - ;em2). 

and hence on substituting this back into (25) we have 

( 2 8 )  I u = (l/s)+u,+EuZ+ ..., '$ = y/e+ ..., 
v = €b,('$) + ev,(E) + eb2('$) + . . . . 

Substitution of (28) into (14) and (15) after a little algebra gives 

(29) 
U = (1/e) - &a2 + O(E), J 

where a is an arbitrary constant. An expansion in e for E is necessary so that 
secular terms can be suppressed: here they would have arisen in the v2(E) in (28).  
From (29) we see that for v to satisfy the boundary conditions in (14) we must 
have as a first approximation 

sin (y/e) = 0 at y = 0, 1, giving l/e = mn, 

and so for small e the maximum m is 

as found by Burgers (1939). 
M = [l/m], 
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R 
FIGURE 3 

Note that if rn decreases q5m increases at  the expense of the mean flow Urn, which 
decreases. To proceed further with the type of eddy or turbulent motions which 
result from an initial disturbance we must consider the unsteady problem. We 
shall indicate that in the progressive stage q5 increases at  the expense of U .  That 
is, from an unsteady-state point of view we progress from 4 = 0 to  the ultimate 
state q5 = with U going from U = I/& to U = U,. This is in agreement with 
Lee (197 l), who showed, with the quasi-steady form of the equations, that there 
is an ultimate steady state. The results of Case & Chiu (1969) imply that the 
opposite is possible and that there is a progression from 4 = to 4 = q52 to 
q5 = (p3 and so on, with a corresponding increase in U. 

3. Unsteady problem 
We return to ( 5 )  and (6) with ( 7 )  and consider the initial turbulent velocity 

distributionf(y) to be such that 0 < $(O) = and U, to 

lie between the minimum and maximum U .  To be specific let us take as an 
example the form illustrated in figure 3, where 0 < a < 1 is not a rational 
number. Because of the nonlinear term ~ V V ,  in ( 5 )  that part of the wave for which 
f’(y) < 0,  that is QPR in figure 3, steepens for t > 0 and in the absence of the 
evyy term shocks develop. The effect of &vuYy is to smooth out such discontinuities 
over a distance of O(e).  Its effect away from such shocks is diffusive with a long 
time scale of O( I/€), 

For times of O(1) the solutions, except at  the actual shocks, to O(1) in 6 are 
governed by (7) and (5) with the right side zero, namely 

f2(y)dy < q5,,, = so’ 

wt + 2vvy - Uv = 0, v(y, 0) = f(y), (31) 

with U given by (6) on solving (31) for v(y, t ;  U ) .  
In  characteristic form (31) becomes 

ym = 2 V )  t, = 1, v,- Uv = 0, 
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the last of which shows that v increases with time since U > 0. With 
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the solution of (32) may be written parametrically as 

v(Y7 t )  = f @ O )  w(t), y = yo+ 2f(YO) W).  (34) 

Until shocks appear t,he dissipation $(t)  is, since yo = 1 when y = 1 (f(1) = O),  

= w2W 9(0) + w2(t) W [8f3(~o)lk 
= w"t) $(O). (35) 

Since w(t) > 0 and dw/dt = U(t )  w(t) > 0, because U > 0, w(t) increases with time 
and hence, from (35), $(t)  increases continuously with time and consequently 
U(t)  from (6) must decrease with time. The mean flow U(t)  is the only source of 
energy for the turbulent motion. The single equation for U is obtained from (6) on 
using (35) with (33) as 

$z(o)exp2Ji U(r)d7  = 1 - q - s ~ .  
0 

Taking logarithms and differentiating we get 

U,,-(2U-€)U,+2U(l-€U) = 0. (36) 

In  the U,, U phase plane there are two singular points U, = 0 = U and U, = 0, 
U = 1/s, the latter being the one of interest in this problem. It is an unstable 
saddle point. 

If we use the quasi-steady-state equation for U the decrease in U with an 
increase in $ is immediately obvious: the equation for U(t)  is easily solved and 
shows exponential decay. 

Until shocks appear the point y = a, at which v(y,t)  = 0, does not move in 
times of O(1). Shocks start, on the f'(y) < 0 region of the initial wave, when y in 
(34) ceases to be a single-valued function of yo, that is, when t = t,, where t, is the 
least value satisfying 2f'(y,) T(tJ = - 1. For t > t, shocks grow and propagate. 
Now $ ( t )  ceases to be given by (35) although it still increases: in the shock 
vicinity evyy is, in fact, of O(l/s). A specific equation for $ is derived below. 

For t > t, let there be a shock at y = yJt)  and across it let v(y, t )  change dis- 
continuously from vl(t) to vz(t). Equation (31) implies that the shock propagation 
speed is 

Further, each of v1 and w 2  must lie on the solution (34) when y = ys. Thus, unless 
vI +v2 is zero the shock will propagate. A typical solution using v(y, 0) as in 
figure 3 is as illustrated in figure 4, where we have, for example, vl+v, > 0, 
which means that the shock moves to the right. The specific analytical details 
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(a) t=O (b) t= t l> t ,  

(d )  I=t,>i, 

FIGURE 4 

for a general initial distribution are not required here but they could be obtained 
using (34) and (37) with vl = v2 at t = t,. The point of relevance here is that the 
original point y = a where v = 0 in figure 3 is overtaken in times of O ( i )  by 
a shock as in figures 4 (c) and (d ) .  Ultimately the shock approaches y = 1 and 

To demonstrate that the ultimate state is that with a single steep region at  
y = 0 or y = 1 (figure 1 (a)), that is, the one to which the solution in figure 4 is 
tending, we consider the stability of the shock solution equivalent to figure 1 ( b )  

v 2 3  0. 

as in figure 5 (a). In  (38), v(y) is v2(y) and U2 in (24) and (26) respectively as E+O.  
Here the shock is at  y2 = 4 and the shock values are initially v1 = -v2 = tU2.  
At time t = 0 we introduce a disturbance into the solution which we take, for 
simplicity only, as a vertical translation of the shock a distance 6 as in figure 5 (b) ,  
and consider the initial-value problem 
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For t > 0 the shock moves, in this case, towards y = 1, and vl(t) and v2(t) satisfy 
(34) with y = ys; that is, 

} (41) 
= +6)y0w(t)7 v2( t )  = +&(yo- I )  (1-6)w(t), 

YAt) = YO+4U2(1+S)Y,T(t) = yo+QU2(1-~)(yo- 1)T( t ) ,  
which gives 

(42) 

The shock position ys(t) is given by the solution of (37) with wl(t) and 02(t)  as 
in (42). It is convenient to use T(t) in place oft, in which case the equation for ys 
from (37) becomes 

I vl(t) = &us(t)w(t)U2(1 +6) [1+&U2(1+S)T(t)]-l, 

vz(t) = $[ys(t)-1]w(t) U2(l-6)[I+$U2(1-6)T(t)]-1.  

with y,(O) = +. The solution is 

ys(T) = & + (26)-1 [{I + 2U2T + (1 - 62) u p p  - {I + (1 - 62) U2T}], (43) 

with T(t) from (33), whichinvolves the undetermined function U(t) .  As t increases 
so also does T(t) and so ys increases from ys(0) = 3, and if (43) held for all times 
the shock would reach y = I in a finite time but with a finite velocity since from 
(42), if ys+ 1, v2(t) -+ 0 and wl(t) is finite. In  the process, of course, $( t )  is con- 
tinually increasing with U(t) decreasing. When the shock is in the neighbourhood 
of y = I ,  however, (31) is not valid since in the vicinity of the shock (at all 
positions) svyy is not of O(s) but in fact of O( l/s). Inclusion of the ewyy term in (31) 
when the shock is not near y = 1 simply smooths it out over distances of O(s) in 
the usual way. When the shock is near y = 1, however, this term introduces a 
kind of boundary-layer cushion which brings the shock to rest in a distance of 
O ( E )  and in a time of O ( E )  and the ultimate state is vl(y) since $(t) simply grows 
to its maximum $l. A demonstration of the cushion effect is given in the 
appendix. 

18 F L M  59 
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To complete the mathematical solution (42) and (43) we would require U(t) .  
To obtain the governing equation we need the expression for $(t)  in such a 
moving-shock situation. In the vicinity of the shock we introduce into (5) new 
singular perturbation variables 

6 = -+[y,(t) - y1, t = t ,  v = v,+ (V,-V1) VE)’ (44) 

where v, and o2 are given by (41). On substituting (44) into (5) and using (37) for 
dysldt we get 

From (44) V(6)  must satisfy 

I& = (v2-v1)(1-2P)~+O(€).  (45) 

V+O as C+m, V-+l  as C-t-m, (46) 

since we require v+vl as y+ys- and v+v2 as y+ys+. The solution of (45) 
with (46) is 

where A is an undetermined constant which represents a shift of O(s)  in the 
position of the shock as given by (37) with (41). A discussion of such shock 
positions correct to O(s) has been given by Burgers [1950b, where (44) and (47) 
above occur together as Burgers’ equation (24); see also Burgers (1964)) in which 
a geometrical procedure is given for constructing solutions], and by Murray 
(1968) for a general class of nonlinear hyperbolic and parabolic equations. 

If we now multiply ( 5 )  by v and integrate with respect to y from 0 to 1 we get, 
in place of (18), using (47) in (44) for v, 

= (w2-v1)2/-m m V,zdC+O(€) 

= - &(vl - v2)3 + o(+ (48) 

Equation (48) is consistent with the steady state when ys = $, v1 = -v2 = $U2 
and U = U,, since then Q ( V ~ - V ~ ) ~  = Ui/12.4 and so q5 = q5, = U2,/12-4 as in (25). 

The full problem to O( 1) for the moving shock thus requires the solution of (6) 
with (48)) namely 

where o1 and v2 are given by (41) with w(t)  given by (33). The problem of finding 
U(t )  is rather intractable analytically: it does decrease as described above. 
However, the pattern of the solution for the turbulent flow v is clear without it. 
The shock situation as in figure 5 (a)  is unstable and tends to the ultimate state 
with the shock at  rest (see appendix) at y = 1 - O(E)  and the configuration as in 
figure 1 (u), the maximum turbulent motion with q5 = which corresponds to 
the minimum mean motion U = U,. Any small disturbance will eventually tend 
to this state and so also will any steady shock state since shocks at points with 
0 < ys < 1 are necessarily unstable by a similar analysis. Figure 6 illustrates the 
subsequent motion for two other possible shock situations: arrows indicate the 
shock motions. It is clear from figure 6 and the above what happens in general. 

ut+eu= I-.$, (bt-uq5=-1 (vl - v2I3, (49) 
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t = O  t = t ,>O 

275 

While here we considered initial states with a shock somewhere in the interior 
of the domain, it is of interest to refer to a case mentioned by Burgers (1939), here 
reproduced as figure 7, where again the point A ( =a)  is different from y = 8. In 
this case the initial state assumed is constructed from two exact solutions of the 
time-independent equation (14), both for the same value of U ,  but with different 

18-3 
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FIGURE 7 

values of C. The initial state everywhere satisfies the equation, with the exception 
of the point A,  where the value of avlay is discontinuous (that of v is continuous). 
The discontinuity in avlay for large U is of order exp ( - G),  which in the present 
notation is something of order exp ( -  U/2s). While it seems probable that the 
final state of the system will again show a shock layer only at one side of the 
domain, it may take an extremely long interval of time before this will be reached. 
By solving Burgers’ equation (that is (1) with U = 0 )  with a similar initial 
condition a time of O(l/a) is indicated. 

4. Conclusions 
The above analysis (with the appendix) indicates that the ultimate turbulent 

state is vl(y) as in figure I (a), with a single large domain of moderate vorticity, 
accompanied on one side by a narrow vortex sheet, having thickness R-l(  = 6). 

When this is described in terms of ‘eddies’, one may consider the picture of 
figure 1 (a) as a single ‘eddy’, but it must be kept in mind that a full spectrum of 
vortex motion is concentrated in the boundary layer. This spectrum has an 
amplitude distribution, which was given by Burgers (1939; see also 1948)’ and 
it forms an essential feature of the solutions of the model system. The steepening 
of the velocity profiles represents the excitation of higher Fourier modes while 
the coalescence of wavcs, as in figure 6, for example, represents the generation of 
lower Fourier modes. Thus, like other nonlinear systems, the model possesses 
a mechanism for the production of vortex motion of smaller and smaller wave- 
lengths, but it has the peculiarity of sweeping all strong vortex motion to one 
side. Burgers (19504 has indicated that this result may be generalized to cases 
of two-dimensional motion, where domains of smooth flow can develop, separated 
by vortex sheets. Although this feature is not usually observed in turbulent flow, 
Burgers (1950a) believes that there may be found cases in which its presence 
can be assumed. Leaving this aside, it appears that Burgers’ model, in con- 
sequence of its simplificity as compared with the full hydrodynamic equations, 
has retained a degree of regularity which is not found in most forms of 
turbulence. 
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Appendix 
As the shock (a weak solution of (31)) approaches the wall y = 1, U and vl(t) 

are finite and v2(t)  w 0. To demonstrate the boundary-layer cushion effect of the 
wall with the minimum of analysis we consider a simpler problem which retains 
all of the required qualitative features, namely ( 5 ) ,  that is, 

vt + 2vv, - uv = eve,,, (A 1) 

with U constant (see below) and 

V ( P ,  t )  = 0, v( -co, t )  = v) 
as in figure 8, where here we have taken the wall to be y = P. As the shock 
approaches the wall we must stretch the co-ordinate perpendicular to the shock 
in the usual way (see (44)) by writing ( = c1(y-/3), in which case (A 1) becomes 

€Vt = VCE - ZVV, + O(€), 

which, since evt must be of O( I) here, is to O( 1) simply Burgers' equation. We 
thus see that if U were not constant but had O( 1)  variations in times of O( 1)  it  
could in fact be taken as U ( t )  as before since it would not affect the cushion 
phenomenon, which as we shall see occurs in times of O(E). For simplicity, how- 
ever, we take it to be constant and the problem reduces to solving (to O( l )  in 8) 
the last equation, namely Burgers' equation 

v, + 2vv, = EVVV (A 3) 

with conditions (A 2 ) .  The usual transformation 

the continuous solution of which is obtained by Laplace transforms. The trans- 
form solution is 

h = ($I/€)&. 

For convenience write 
€ p  = 2, 
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in which case the inversion of (A 6) gives the solution to (A 5 )  in the form 

where L is the Bromwich contour and 

f ( z )  = zt-z4(2/3- y), g(2)  = zt-2.E-y. (A 9) 

A steepest-descents evaluation of (A 8) fore < 1 and y w p, the case of interest 
here, gives 

and finally from (A 4) 

$(y, t )  N 1 + 2 exp [ Ue-l( Ut - p)] cosh [ Us-l(y - p ) ]  + . . . , 

U exp [ Ue-l( Ut - p)] sinh [ Ue-l(p - y)] 
+ exp [ Ue-l( Ut - p)] Gosh [ Ue-l(p - y)] 

f... (€-to). (A 10) ‘(” t ,  

For t 9 1, equation (A 10) (or (A 8)) gives the ultimate steady form near 

w(y, t )  N U tanh [ Ue-l(p - y)], (A 11) 
y = p a s  

which is the steady singular perturbation part of w(y) near the boundary when 
the appropriate values are given in ( 2 2 ) .  

When y is not near y = p, equation (A 10) becomes the usual shock transition 

U exp [ U c l (  Ut  - y)] 
Z e x p  [ ~ e - l ( ~ t  - y)] 

solution 
+ ... . v ( ~ ,  t ,  

The shock position is given at  any time by Ut - ys = 0 -that is, when the expo- 
nents in (A 12) are zero: this is the point where, from ( A  12) ,  v(y,, t )  = +U. 

The actual shocks in (A 10) and ( A  12) are obtained on letting E +  0. Fro= 
( A  12) the shock is at ys(t) = Ut until ys = Ut M /I, in which case (A 10) must be 
used in place of ( A  12) .  In  this case, however, there is essentially no shock. If we 
use the point where v(y, t )  = $U as an indication of the ‘shock’ position we obtain 
it and its speed of propagation from (A 10). Setting w(y, t )  = $CJ y = ys in (A 10) 
we get 

(A 13) exp[- Uc1(Ut-/?P)] = exp[Ue-l(P-yS)]-3exp [- Ue-l(/3-yS)], 
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from which, for Ut - p  > 0, we get (or more simply from (A 11)) 

y, x p - (€12 U )  log 3. 

From (A 13), on differentiation, the ‘shock’ speed is 

I %& U exp [ - U+( Ut - p)] 
dt . exp [ Us-l(p - y,)] + 3 exp [ - Us-l(p - y,)] ’ 

I 
from which we see that the shock as it approaches the wall is brought to rest 
exponentially in a time t = O(s) in a distance of O(s) from y = p. 

Returning to the problem in the main text we have p = 1 and vl(t) in place of 
U in (A lo), (A 13) and (A 15) as first approximations to the turbulent velocity, 
the shock position and its speed of propagation near the boundary. The steady- 
state singular form near y = 1 is also obtained. In  the limit as s-f 0 equation (35) 
holds and q5 eventually tends to its maximum in (25). 
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